WVCWB-R I/F ボード

取扱説明書

株式会社 ウィビコム

2015.5 1.1 版

1	はじめに	
2	ボードの構成	1
З	テスト準備	
	3. 1 UART 動作	
	3. 2 SPI 動作	7

Г

WiViCom

1 はじめに

WVCWB-R I/FボードはWLANユニット(WVCWB-R-022/WVCWB-R-028)とホストのインターフェース ボードです。 本ボードは WLAN ユニットのコネクタ端子を D-Sub9 またはピンヘッダに変換することを 目的としています。 このボードを使用することで WLNA ユニットの評価、開発が容易になります。

UART インターフェースは D-Sub9 コネクタを使用します。 SPI インターフェースはピンヘッダを使用します。

2 ボードの構成

DC ジャック

AC アダプタから電源を供給したい場合に使用します。 接続可能な AC アダプタは DC 出力 5V~3.3V までとなります。 WLAN ユニットは 3.3V 駆動ですが、WVCWB-R I/F ボード上に電圧レギュレータ(出力 3.3V)が実装 されていますので DC5V まで使用可能です。

DC3.3Vを超える電圧を供給する場合は JP5/JP6 の設定にご注意ください。

<u>D-Sub9 コネクタ</u>

UART 動作モードの WLAN ユニットを評価する場合に使用します。 PC の D-Sub9 コネクタとストレートの RS-323C ケーブルで接続してください。 ※UART 動作モードのリセット信号についてをご参照ください。

FFC コネクタ

FFC コネクタ実装タイプの WLAN ユニットの評価で使用します。(標準構成) 1.0mm ピッチ 14 極の FFC ケーブルを取り付けます。

ピン番号	名称	機能
14	GND	GND
13	SPI_CK	SPI クロック
12	SPI_CS	SPI CS
11	SPI_MOSI	SPI MOSI
10	SPI_MISO	SPI MISO
9	SPI_INTR	SPI 割込み
8	D33V	3.3V 電源
7	D33V	3.3V 電源
6	RESET	リセット
5	UART_TX	シリアル送信
4	UART_RX	シリアル受信
3	NC	
2	NC	
1	GND	GND

miniUSB コネクタ

RS-WC-201 実装ユニットを使用し、ホスト I/F を USB とした場合に使用します。(オプション)

RS-WC-201 ユニット 接合コネクタ

RS-WC-201 実装ユニットを評価する場合に使用します。(オプション)

<u>RS-WC-201 動作モード設定スイッチ</u>

RS-WC-201 実装ユニットを評価する場合に使用します。(オプション)

SM15B-SRSS-TB コネクタ

JST, SM15B-SRSS-TB コネクタ実装タイプの WLAN ユニットの評価で使用します。(オプション) 15 極の SHR-15V-S-B コネクタのケーブルを取り付けます。

ピン番号	名称	機能
1	GND	GND
2	NC	
3	SPI_CK	SPI クロック
4	SPI_CS	SPI CS
5	SPI_MOSI	SPI MOSI
6	SPI_MISO	SPI MISO
7	SPI_INTR	SPI 割込み
8	D33V	3.3V 電源
9	D33V	3.3V 電源
10	RESET	リセット
11	UART_TX	シリアル送信
12	UART_RX	シリアル受信
13	NC	
14	NC	
15	GND	GND

<u>WLAN ユニット取付穴</u>

WLAN ユニットを固定する場合に使用します。 (付属の M2 のネジとナットを使用してください。)

<u>CN501</u>

ホスト I/F のピンヘッダです。

ピン番号	名称	機能
1	VCC50	DC5V 供給
2	GND	
3	VCC33	DC3.3V 供給
4	GND	
5-14	NC	
15	SPI_CS_H	SPI CS
16	RESET_H	リセット
17-18	NC	
19	SPI_MOSI_H	SPI MOSI
20	SPI_CLK_H	SPI クロック入力
21	UART_RX_H	シリアル受信
22	UART_TX_H	シリアル送信
23	SPI_INTR_H	SPI 割込み
24	SPI_MISO_H	SPI MISO
25-26	NC	

DC5VとDC3.3Vの同時利用はできません。 UART_RX_H、UART_TX_Hは使用できません。

ピン番号	名称	機能
1	UART_RX	シリアル受信
2	UART_TX	シリアル送信
3	WAKEUP	RS-WC-201 ユニット用
4	SPI_READY	RS-WC-201 ユニット用
5	PT_GPIO_2	RS-WC-201 ユニット用
6	WF_HANDSHKE_2	RS-WC-201 ユニット用
7	PT_GPIO_1	RS-WC-201 ユニット用
8	WF_HANDSHKE_1	RS-WC-201 ユニット用
9	AK62_HB_N	AKI-RX62 の通常動作中にトグル変化します
10	AK62_HB_E	AKI-RX62のエラー発生時にトグル変化します
11	NC	
12	RESET_H	リセット
13	SPI_CS_H	SPI CS
14	SPI_CLK_H	SPI クロック
15	SPI_MOSI_H	SPI MOSI
16	SPI_MISO_H	SPI MISO
17	SPI_INTR_H	SPI 割込み
18-26	NC	
27	DBG_UART_TX	AKI-RX62:デバッグコンソール CN402 へ
28	DBG_UART_RX	AKI-RX62:デバッグコンソール CN402 へ
29-36	NC	
37,39	VCC33	DC3.3V
38,40	GND	

UART_RX_H、UART_TX_H は使用できません。

	CN502 AKI-RX62 (CN502 AKI-RX62 (NC)	
UART_TX_M WAKFUP	$\frac{1}{30}$ $\frac{0}{0}$	UART_RX_M 	
PT_GPI0_2 PT_GPI0_1 ▲ AK62_HB_N	50 06 70 08 90 010	WF_HANDSHKE_2 WF_HANDSHKE_1 AK62_HB_F	
SPI_CS_H SPI_MOSI_M	$ \begin{array}{r} 110 \\ 130 \\ 130 \\ 150 \\ 150 \\ 170 \\ 19 \end{array} $	RESET_H SPI_CLK_H SPI_MISO_M	
DRG LIART TX	190 020 210 022 230 024 250 026 270 028	DRG LIADT DX	
	290 030 310 032 330 034 350 036 370 038		
<u>UCC33</u>	390 040	GND	

<u>CN402</u>

AKI-RX62 ボード使用時のデバッグコンソール用コネクタです。

他の CPU ボードの場合、UART 端子を DBG_UART_TX,DBG_UART_RX 端子に接続して利用可能 です。 CN401 は PC レベルの電圧変換が行われていますので PC の D-Sub9 コネクタへ直接接続 することができます。

	CN402	D-Sub9
CN402	1	5
Debug UART Pin	2	2
	3	3
DBG TXD 20 DBG RXD 30		4-6 ショート
		7-8 ショート
		1,9:NC

JP1

<u>JP2</u>

CN501の SPI_MISO_H と UART_TX_H の信号切り替えジャンパーです。 CN501の SPI_MISO_H 端子を使用する場合は 1-2 ショートしてください。 ※1-2 以外の設定は禁止 詳細は回路図をご参照ください。

<u>JP3</u>

SPI_INTR 信号の論理反転の切り替えジャンパーです。 1-2:WLAN ユニット信号出力を論理反転します。 3-4:WLAN ユニット信号出力のままです。 1-3,2-4:設定禁止 ※AKI-RX62 ボードを使用する場合は 3-4 をショートしてください。 詳細は回路図をご参照ください。

JP5

電圧レベル変換 IC への供給電圧の切り替えジャンパーです。 1-2: VCC33 端子 3-4: AC アダプタ(DC3.3V) 5-6: VCC50 端子 以外の組み合わせは下記を除き禁止 ※DC5V 出力の AC アダプタを使用する場合は以下のように設定してください。 1-2 と 4-6 をショート

JP6

WLAN ユニットへの電源供給ラインの切り替えジャンパーです 1-2: VCC33 端子 3-4: AC アダプタ(DC3.3V) 5-6: VCC50 端子から DC3.3V 以外の組み合わせは下記を除き禁止 ※DC5V 出力の AC アダプタを使用する場合は以下のように設定してください。

1-2 と 5-6 をショート

UART 動作モードのリセット信号について

UART 動作モードで使用する場合は CN501 または CN502 の RESET_H 端子にピンヘッダを取り付け てください。(半田付けなど)

取り付けた端子と JP5 の 1,3,5 の空いているピンを付属のジャンパー線で接続してください。

3 テスト準備

FFC ケーブルで WVCWB-R I/F ボードと WLAN ユニットを接続してください。

3. 1 UART 動作

付属の DC3.3V 出力の AC アダプタを使用します。

- 1. JP5 の 3-4 をショートする
- 2. JP6 の 3-4 をショートする
- 3. RESET 信号を供給する(例えば CN501 の RESET_H と JP5 の 5 ピンを結線)
- 4. D-Sub9(CN401)とPCをRS232Cストレートケーブルで接続する
- 5. PC 上でターミナルソフトを起動する。
- 6. リセットスイッチ(SW301)を押したまま、AC アダプタを接続する。(LED201 が点灯する。)
- 7. AC アダプタの接続が完了したらリセットスイッチ(SW301)を放す。
- 8. リセットスイッチ(SW301)を押し、放す。
- 9. 暫く待つと WLAN ユニットが起動します。
 - (WLAN ユニットの LED 点灯し、起動メッセージがターミナルソフト上に表示されます。) ・ターミナルエミュレータ推奨設定値

項目	設定	
ボーレート	115200	
データ長	8ビット	
パリティ	なし	
ストップビット	2 ビット	
フロー制御	なし	
改行	送信 CR+LF, 受信 LF	
ローカルエコー	あり	

入力文字列は端末エミュレータのローカルエコーなので、BS等による文字列修正は無効となることに注意する。 ・検出可能な通信速度(bps)

9600, 19200, 38400, 57600, 115200, 300000, 230400, 460800, 921600, 1843200, 3686400

- ・通信速度の自動検出手順(送信/受信は CPU から見た)
 - a. 電源端子およびリセット端子に 3.3V 供給
 - b. リセット端子を開放
 - c. リセット端子に再度 3.3V 供給
 - d. 約 100ms 待つ
- e. 0x1Cを送信する
- f. 0x55を受信する
- g. 0x55 が受信できないときは、約 200ms 後に 0x1C を再度送信する
- h. 0x55を送信する
- i. 起動メッセージが受信できる

※自動検出が失敗した場合、WLAN ユニットは 0x55 の送信から 18 秒後に起動メッセージを送信し 115200bps で起動します。 10. AT コマンドで WLAN ユニットを制御してください。

3. 2 SPI 動作

CPU ボード(AKI-RX62)を使用し、電源供給はボードから行います。 CPU ボードのセットアップは事前に完了しているものとします。

- 1. JP5 の 1−2 をショートする
- 2. JP6 の 1-2 をショートする
- 3. JP3 の 3−4 をショートする
- 4. CPU ボードの CN1 と CN502 を接続する

接続ピンは以下のとおり

ピン番号	名称	備考	
9	AK62_HB_N	必須でない	
10	AK62_HB_E	必須でない	
12	RESET_H		
13	SPI_CS_H		
14	SPI_CLK_H		
15	SPI_MOSI_H		
16	SPI_MISO_H		
17	SPI_INTR_H		
27	DBG_UART_TX		
28	DBG_UART_RX		
37,39	VCC33		
38,40	GND		

- 4. デバッグコンソール(CN402)と PC を RS232C ストレートケーブルで接続する
- 5. PC 上でターミナルソフトを起動する。

項目	設定
ボーレート	38400
データ長	8 ビット
パリティ	なし
ストップビット	1ビット
フロー制御	なし
改行	送信 CR+LF, 受信 LF
ローカルエコー	なし

- 6. CPU ボードの CN3 に USB ケーブルを接続します
- 7. AP とターゲットを用意してください(WLAN パラメータを参照のこと)
- 7. CPU ボードのスイッチ(S1)を ON にします。
- 8. LED201 が点灯し、起動メッセージがターミナルソフト上に表示されます。
- 9. デフォルトで書き込まれたデモソフトが起動します。(UDP パケット送信)

WLAN パラメータ

項目	値
バンド	2.4GHz
SSID	RSI-Demo-AP
チャンネル	3
セキュリティ	オープン
WLAN の IP アドレス	192.168.0.150
ゲートウェイ	192.168.0.1
ターゲットの IP アドレス	192.168.0.151
ローカルポート	50001
ターゲットポート	50002

※本資料の内容および製品の仕様は予告なく変更することがあります。